
IRRADIATOR WITH TEMPERATURE CONTROL AND MONITORING FOR THERMOLUMINESCENCE DOSIMETRY

* João Vitor Fernandez, Arnaldo Luis Lixandrão Filho, Sandro Guedes * jvitorfernandez@gmail.com

INTRODUCTION

- ➤ The amount of ionization electrons trapped in a thermoluminescent dosimeter (TLD) crystal lattice is proportional to the absorbed dose.
- Variations in ambient temperature can lead to signal fading.

 $\label{eq:Figure 1-A} Figure 1-A) \ Crystal ionization elevates electrons from the valence band to the conduction band. In deexcitation, electrons are trapped in the T energy levels. The same happens with holes, which are trapped in recombination centers (R);
B) Release of charge carriers after heating the crystal and subsequent recombination with the emission of thermoluminescence photons .$

OBJECTIVES

➤ Built an irradiator with temperature monitoring and control to assist in studies with TLDs.

MATERIALS AND RESULTS

- ➤ A prototype of the irradiator was assembled using a cellar cabinet with internal support designed in the free software ThinkerCAD and manufactured in ABS in a 3D printer.
- ➤ The radioactive source used was a ⁹⁰Sr pellet of 2 mm in diameter and activity of 23 kBq. The source is positioned above the sample, radiating it from top to bottom.
- > The temperature is controlled by an electronic circuit onoff. A range of stable temperatures for irradiation, between (10 ± 1) °C and (30 ± 1) °C, was obtained.
- ➤ The total dose efficiency deposited by electrons in the sample was estimated to be 83 %. This value includes the efficiency of interactions at the solid angle (~ 98,04 %), calculated by the expression:

$$\Omega = 2\pi \cdot \left[1 - \frac{h}{\sqrt{h^2 + h^2}} \right] \quad [1]$$

where *h* and *b* are dimensions of the support;

 \triangleright And the efficiency of scattering in the air (~ 85 %), estimated through a Monte Carlo simulation.

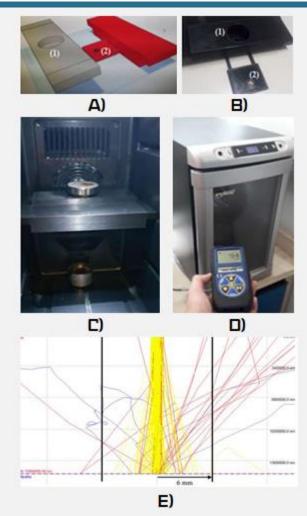


Figure 2 – A) Superior view of support on ThinkerCAD; B) Support printed, number 1 shows the location of the radioactive source, and number 2, the location of the TLD crystal; C) Prototype interior with the radioactive source placed; D) Radioprotection monitoring for the user of irradiator; E) Monte Carlo simulation for dose estimation efficiency: mean energy 182 keV,

CONCLUSIONS

- Possible to carry out experiments to check the signal fading, arising from an atypical environmental condition during irradiation or during storage;
- ➤ The irradiation always occurs in the same position, guaranteeing reproducibility in the measure and ensuring that the operator is exposed only to the secondary radiation.

REFERENCES

[1] – ATTIX, Frank Herbert. Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008.